Predictive model for growth
ofClostridium perfringens
at temperatures applicable
to cooling of cooked meat'

V. K. Juneja'*, R. C.Whiting', H. M. Marks? and O. P. Snyder®

The objective of this study was to develop a model to predict the growth of Clostridium perfringens
from spores at temperatures applicable to the cooling of cooked meat products. The growth medium
used was trypticase-peptone-glucose-yeast extract broth. C. perfringens population counts were de-
termined at appropriate intervals by plating onto tryptose-sulfite-cycloserine agar. C. perfringens
growth from spores was not observed at a temperature of 51°C for up to 3 weeks. It was found that,
generally, for relative growth of more than % logyo. the use of the logistic function provided a better
prediction than the use of the Gompertz function. The two parameters: germination, outgrowth and
lag (GOL) time, and exponential growth rate, EGR, were determined using the logistic function. The
exponential growth rates and the reciprocal of the GOL times were fitted to the square root Ratkowsky
model, using temperature as the independent variable. Applying multi-variate statistical procedures,
confidence intervals were computed on the prediction of the amount of relative growth for a given
temperature. Closed form equations are developed that allow for predicting growth for a general cool-
ing scenario and the standard error of the prediction. These equations depend upon microbiological
assumptions of the effect of history of the GOL times for gradual changes in temperature. For example,
for cooling from 50°C to 10°C in 8 h, the equations predict a relative growth of 3-37 with an upper
97-5% confidence limit of 6-73. © 1999 Academic Press

numerous foodborne disease outbreaks and
thus, continues to remain a major concern to

Introduction

Clostridium perfringens are widely distributed
n a variety of foods, particularly meat and
poultry. The organism has been implicated in
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the food industry world wide. (Anonymous
1996, Centers for Disease Control and Preven-
tion 1985, Stringer et al. 1980, Todd et al. 1997).
Illness results after the ingestion of a large
number of viable vegetative cells which have
grown in the implicated meat or poultry pro-
duct and then survive stomach passage. The
vegetative cells subsequently sporulate in the
small intesine. The heat-labile enterotoxin,
known as C. perfringens enterotoxin is
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synthesized during sporulation and is released
together with the mature spore during sporan-
gial autolysis.

The abilities of C. perfringens to form heat-
resistant spores and to grow at a very rapid
rate at relatively high temperatures are the ma-
jor contributing factors leading to food poison-
ing. The temperature range for growth of C
perfringens, 6-52-3°C, is well documented (Hall
and Angelotti 1965, Johnson 1990, Shoemaker
and Pierson 1976). A short generation time of
7-1min in autoclaved ground beef means that
after the spores have germinated, rapid cooling
of foods is critical (Willardsen et al. 1979).
The time/temperature guidelines for cooling
cooked products recommends that the maxi-
mum internal temperature should not remain
between 54-4 and 267°C for more than 1-5h
nor bhetween 267 and 44°C for more than
5h (USDA 1989).The US Food and Drug Admin-
istration (FDA) Division of Retail Food Protec-
tion recognized that inadequate cooling was a
major food safety problem and established a re-
commendation that all food should be cooled
from 60 to 21°C (140-70°F) in 2 h and from
21 to 5°C (70-41°F) in 4 h (FDA Code 1997).
Utilizing Clostridium perfringens in cooked
beef with cooling from 544°C to 7-2°C at
rates varying from 6 to 18 h, Juneja et al.
(1994) found that even a longer cooling period
of up to 15 h prevented growth from a spore
inoculum.

Blankenship et al. (1988) developed a model
for the growth from spores of C. perfringens in
cooked chilli during a 4 h and 6 h exponential
cooling time for a temperature decline from
50°C to 25°C. In that previous study, the num-
ber of germinating spores were calculated
every hour during the cooling period.

In the scientific literature, there is a lack of
quantitative data on the growth of C. perfrin-
gens over the entire growth temperature
range which foods must pass through during
cooling after cooking. The heat-activated
spores in such products are likely to germi-
nate, outgrow and multiply if the rate and
extent of cooling is insufficient. Inadequate
cooling practices in retail food operations
have been cited as a major cause of food poi-
soning with C. perfringens (Bryan 1978, Bean
and Griffin 1990). Accordingly, the aim of the

present work was to develop a model to pre-
dict the relative growth of C. perfringens from
spores at temperatures relevant to the cooling
of cooked products.

Materials and Methods

Test organisms and spore production

Three strains of C. perfringens, NCTC 8238
(Hobbs serotype 2), NCTC 8239 (Hobbs sero-
type 3), and NCTC 10240 (Hobbs serotype 13)
were used in this study. The origin and sources
of the strains and spore production methods
have been reported (Juneja et al. 1993). After
the spore crop of each strain had been washed
twice and resuspended in sterile distilled
water, the stock spore suspensions were stored
at 4°C. A spore cocktail containing all three
strains of C. perfringens was prepared immedi-
ately prior to experimentation by mixing equal
numbers of spores from each suspension. This
spore mixture was heat-shocked for 20 min at
75°C prior to use.

Growth medium, inoculation and sampling

Trypticase-peptone-glucose-yeast extract
(TPGY) containing (% w/v). 5% trypticase;
0-5% peptone; 2% yeast extract; 0-1% cysteine
hydrochloride (Sigma Chemical Company,
St. Louis, Missouri, USA); and 0.4% dextrose
was used for determination of growth rates.
Except as noted, ingredients were obtained
from Difco (Detroit, Michigan, USA); trypti-
case was obtained from Baltimore Biological
Laboratory (BBL, Cockeysville, Maryland,
USA). The medium was dispensed in 50 ml
portions into 250 ml trypsinizing flasks
equipped with a rubber septum inserted in
the side arm sampling port, and sterilized by
autoclaving.

Dextrose and cysteine hydrochloride were
dissolved in deionized water, filter sterilized
(0-22-um pore-size syringe filter, Nalge Com-
pany, Rochester, New York, USA) and added
aseptically to the medium. Each flask received
0-5 ml of the heat-shocked spores to obtain an
initial count of about 2-3 log,o spores ml~* of
the growth medium. The flasks were then
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flushed with sterile N, for 10 min and sealed
with a rubber stopper. All flasks were incu-
bated on a rotary shaker (150 rpm) at 15-50°C
(2°C increments). At intervals appropriate
for each growth temperature, samples were
withdrawn through the side arm septum with a
syringe fitted with a hypodermic needle. Serial

“dilutions made in 0:1% peptone water (w/v)
were surface-plated with a Spiral plater (Model
D, Spiral Biotech, Bethesda, Maryland, USA)
onto tryptose-sulfite-cycloserine agar with-
out cycloserine, i.e., SFP agar and egg yolk
enrichment. The lower limit of detection by this
procedure is 21 cfu ml1 1, After overlaying with
an additional 10 m]l of SFP agar, the plates were
allowed to solidify before placing into anaero-
bic jars.The total C. perfringens population was
determined after 48 h of incubation at 37°Cin a
Gas Pak system (BBL).

Three replicate experiments were con-
ducted at each temperature. For some sets of
replicates there were problems with the incu-
bator, samples were not measured for suffi-
cient time to observe substantial growth, or
there was an apparent sample contamination.
In such cases, an additional three replicates
were conducted and the results from the re-
peated experiments were used. Exceptions
were made for 15°C and 28°C. For 15°C, only
two replicates were conducted, and in one of
them there was some growth. The results from
this experiment were used for estimation pur-
poses, as described below. For 28°C, two repli-
cates were conducted for a second set of
experiments, after an incubator problem was
noted for one of the replicates of the first set
of triplicate replicates. Thus, results from four
replicates were used. In addition, four data
values, whose measurements were made with-
in 1.5 h from the start, were deleted because
the measured values were an approximate 1
log;o or more above the minimum values ob-
tained from the corresponding growth experi-
ments of the questionable data values, and
were clearly inconsistent with the measure-
ments made before or after, One data value,
at 42°C, measured at 7 h, was deleted because
its measurement value was more than 1logy
below the previously measured value and
more than 4 log;y below the subsequent mea-
sured value.

Resuits

Fitting growth curves

The growth of an organism as a function of
time, can be described by

L(t)= A+ (P- A)f(IM,B) (1)
where L(t) is the common logarithm of N(t),
the number of organisms at time ¢, f(t|M, B) is
a non-decreasing function of time between 0
and 1, M and B are non-negative parameters
that describe the slope and location of the
curve along the t-axis and are functions of
the relative growth rate and the GOL time, A
is an asymptotic minimum value and P is an
asymptotic maximum value and represents
the maximum population density. For example
functions that can be used for f(¢|M,B)
are the Gompertz function: g(t{|M,B) =
exp(— exp(— B(t—M)), the logistic function:
h(t|M,B) =1/(1 + exp(-B(t — M))) or a gen-
eralization of the logistic which introduces a
third parameter, v, such as the Richards exten-
sion, r(t|M, B,v) = (1/(1 + vexp(-B(t - M))""
(Zwietering et al. 1990). The Gompertz function
has been shown to provide good predictions of
growth in experimental situations for many or-
ganisms (Zwietering et al. 1990) and has been
used for fitting growth for many organisms
(Buchanan 1990). This function describes a
slow initial growth, followed by a rapid in-
crease in growth, and then asymptotically le-
veling off. The logistic function describes a
more rapid initial growth than that of Gom-
pertz. While these functions are continuous
and have continuous derivatives, the para-
meters are difficult to interpret in biological
terms. A simple function to interpret, which
though is not bioclogical plausible but still may
provide sufficient predictions of growth, is
the spine function, s(tjM, B) = min(1, max (0,
B(t - M))) (Buchanan et al. 1997).

In generating growth curves using data from
controlled experiments, it is often assumed
(Gibson et al. 1988, Buchanan 1990) that Pis a
constant quantity and A = logo(No), where Ny
is the initial number of organisms. To estimate
the parameters for equation 1, for a given tem-
perature/replicate growth experiment, the
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value of A was computed to be the average of
the logy, transformed measured population
densities that occurred at a time equal to or
less than the time of the minimum measured
population density. Data analysis on the maxi-
mum measured population densities obtained
from the different experiments suggested that
the maximum population density did not de-
pend on temperature. Thus, P was considered
a constant and was set equal to 10-4log;o, which
was the log; of the maximum measured popu-
lation density obtained from all the experi-
ments. Estimates of B and M were derived
using PC-SAS® system for windows, release
612, PROC NLIN procedure. For the spline
function, s(¢t|M, B), data for which L(f) were
greater than 7 were deleted.

The estimates parameters of the Richard
and spline functions were highly variable
among replicates experiments for a given tem-
perature, or, for the Richard function, on occa-
sion the estimation procedure did not converge
to a solution. A reason for the instability is
that the number of data values per experiment
(£10) was not sufficient to provide stable
estimates of the three parameters. Thus, the
Richards and spline functions were not used.

The use of either the Gompertz and logistic
functions provides reasonably good predic-
tions, so that the choice of which function to
use should depend upon the behavior in re-
gions for which it would be most important to
have good predictions. Thus the data analysis
concentrated on regions where there would be
at least moderate growth rates or low GOL
times. The growth curves generated in this re-
search will be applied for predicting growth of
C. perfringens during cooling of cooked ready-
to-eat products. The concern is to limit the re-
lative growth of C. perfringens to no more than
certain amount, for example, 10-fold (1log;o)
(USDA 1996). Thus, for evaluating growth
curves, particular attention is paid to the per-
formance of the predictions of relative growth
in the vicinity of 1log;e. Our data analysis did
show that the use of the Gompertz function
provided, on the average, better predictions of
relative growth for the low temperatures
(£22°C) than use of the logistic function, but
for temperatures above 22°C (< 25°C), on aver-
age, the logistic was better in the primary
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region of concern. For purposes of further ana-
lysis of the residuals, the data were divided
into three regions defined by a measure of log,,
relative growth, Rg=L(t)—A:1) lag period,
Rg< 05; 2) early growth, 05<Rg<23;
and 3) later growth, Rg>23. The means,
standard deviations of the residuals, and the
correlation of the residuals with Rg in each
of the three regions for the Gompertz and
logistic functions identified above for
temperatures > 25°C are presented in Table 1.
As can be seen, the use of the Gompertz func-
tion provides better predictions of the relative
growth that the use of the logistic function in
region 1, lag period, where the measured rela-
tive growth is small. However, for region 2,
early growth, where the relative growth has be-
gun to accelerate, the logistic function does
better than the Gompertz. Both curves in this
region underestimate growth, but the magni-
tude of the negative bias using the Gompertz
function is approximately twice that when
using the logistic function and the residuals
(using the Gompertz function) are negatively
correlated with Rg. Thus, for predicting rela-
tive growth as a function of time and tempera-
ture, the logistic function is used.

From estimates of M and B, estimates of
GOL time and the exponential growth rate,
EGR, were computed. The exponential growth
rate, EGR, is defined to be the maximal relative

Table 1. Summary of residuals (observed
logg(density) — predicted logio(density)) over tem-
peratures > 25°C, by magnitude of log;, relative
growth = (logy, (density)— A) where A is estimate
of logo(density at time ¢ =0)

) Residuals
Log;o relative

growth (Rg) Statistic Logistic Gompertz
Rg<05 Mean (n=60) 0147 0-013
s.d. 0-170 0122
Correlation?® 0444 0.767
05<Rg<23 Mean (n=>54) 0091 0192
s.d. 0.287 0-365
Correlation 0057 —0-384
2.3<Rg Mean (n=116) 0012 0020
s.d. 0479 0-542
Correlation 0-209 0-521

®Pearson correlation of residuals with Rg.



growth rate d(L(t))/dt, with units logy(cfu
ml™Y) h~! (Gibson et al. 1988, McKeekin et al.
1993). The GOL time is defined as the value of
time at the point of intersection of the line con-
taining the point (M; L(M)) with slope equal to
the exponential growth rate and the horizontal
line at Ly (McKeekin et al. 1993). The growth
characteristics, EGR and GOL, for the Gom-
pertz function, g(t), can be expressed as:

ERG = B(P - A)/e

(2)
GOL =M + (e-g(0) - 1)/B

where e=-exp(l), while those for the logistic
function, A(t), can be expressed as:

EGR=B(P- A)/4
GOL = M + (4h(0) - 2)/B

The estimated values of GOL and EGR, assum-
ing A =1log;(Ny) (Gibson et al. 1988), derived
from the experiments, using Gompertz and
logistic growth curves, are presented in Table 2.
The heading in Table 2, ‘Approximate GOL
time, conveys that the calculations were made
assuming A =log;o(Np). This assumption leads

Tabl‘e 2. _ Estimated GOL times (h) and exponential growth rate (logy(cfu ml™Yh~Y of Clostridium
perfringens in TPGY broth for Gompertz and logistic curves

Approximate® Approximate® Exponential Exponential
_ GOL time GOL time growth rate growth rate

Experiment Temperature Gompertz logistic Gompertz logistic
1 150 —72:654 154752 00033 00049
2 190 39.057 41412 01383 01339
3 19.0 40.757 43-946 01226 01222
4 190 38-146 42006 01245 0-1266
5 220 18-380 25-323 01582 01928
.6 220 15-340 17-685 0-2042 0-2055
7 220 16-597 19.311 0-2015 0-2088
8 250 6-020 6-551 0-3141 0-3212
9 25.0 6405 6787 0-3222 0-3255
10 250 8752 8933 04357 04308
11 280 5196 5-878 0-8441 09117
12 280 5808 6-156 0-8573 0-8390
13 280 5553 6035 07616 07547
14 280 5741 6-669 0-7942 09050
15 300 3:5756 4.222 0-7833 0-8129
16 300 4459 5-085 10368 1.1527
17 300 4-598 5.229 10635 1.2032
18 350 3-326 3-830 1.3014 14417
19 350 3030 3160 1.3555 1.3383
20 350 2147 34068 1.2642 1.3196
21 370 3286 3624 14145 14859
22 370 2714 2-963 1.3512 1.3722
T 23 370 3242 3518 1-3889 14231
24 420 3641 3693 2:3024 2-2162
25 420 4.809 5127 1.5778 1.6544
26 420 5612 6095 1.5720 17278
27 450 2-979 3-399 1-2136 1-3737
28 450 3-679 3-766 16499 17206
29 450 3603 3786 16838 17548
30 475 2686 2819 1-5155 15148
31 475 2912 3012 16915 16734
32 475 2936 3067 16314 16338
33 500 5759 6024 15356 16256
34 500 5452 5737 14677 1.5538
35 50-0 5-620 5-893 15313 16169

3(Calculated assuming the initial number of organisms, at time=0, is equal to minimum asymptote

(t = —o0).

R6713-5



to a negative approximate estimate for the GOL
time at 15°C using the Gompertz function. The
exact calculation of the GOL time gives a posi-
tive answer and is close to the value obtained
for the GOL time using the logistic function. As
can be seen from Table 2, the estimated values of
GOL time and EGR are similar for the logistic
and Gompertz functions. However, for the
Gompertz curve, when time is equal to the GOL
time, the logo transformation of the relative
growth, L(t) — A, is equal to (P — A) exp(—e)~
0-066 (P — A), and for the logistic curve, it is
equal to (P—A)/(1+ exp(2)~ 0119(P - A).
Thus the estimate of the logyo transformation of
the relative growth, log;o(N(t)/Np), at lag time
using a logistic curve is approximately twice
that using Gompertz curve.

Modeling growth characteristics

The above equations apply for a constant tem-
perature. However, for a cooling scenario, the
temperature would be changing, so that, for
predicting the amount of relative growth,
N{(t)/ Ny, it is necessary to express the growth
characteristics: GOL and EGR, as functions of
temperature. For generic bacteria, it has been
found by researchers (Ratkowsky et al. 1983)
that the square root of the exponential growth
rate, k, as the dependent variable, and the most
general form of Ratkowsky model,

FYY(T) = (T ~ Toun) (1~ exp (B(T — Tora)))®
4

where a, b, T, and Ty,ay, are unknown positive
parameters, « is usually either 1 or %, provides a
good statistical fit. The Ratkowsky equation de-
scribes a curve for which, starting from zero
at temperature Ty, there is a near linear
increase of the dependent variable, k, with
increasing temperature, until reaching a max-
imum value, followed then by a rapid decline to
zero at temperature T, The choice of « de-
pends upon the curvature at the maximum le-
vel and the rapidity of the decline for high
temperatures. If the maximum seems flat, then
the exponent -12 would be preferable. This ap-
pears to be the case for the data generated in
this study. The root mean square error of the re-
siduals from the regression when « =1 was
smaller than that for when o« =1. Without

many data points near the point of curvature,
at temperatures less than and greater than
the temperature for which the curve is at its
maximum it is difficult to estimate well the cur-
vature. The consequence, statistically, is that
the estimate of o from a regression analysis is
highly correlated with the estimates of the
other parameters resulting in very unstable es-
timates. Thus o was not used as an unknown
parameter and was set equal to } for the regres-
sion analysts.

For modeling GOL and EGR, there are two
equations, similar to the equations 4, with
eight parameters. For temperature outside the
interval T, to Tmax the GOL time and the
exponential growth rates are not defined.
Assuming different Ty, and Ty, values for
GOL and EGR and using the same estimation
procedures as described below, the estimate
of Twmin (EGR)=1075° C> Tpin(GOL) = 8.26°C,
while both Tpax(GOL) and T (EGR) were ap-
proximately equal to 51°C. The two estimates,
Tmin (GOL) and Trin(EGR), are not statistically
significantly different. For the final model, it will
be assumed that T;,(GOL)= Tpi\n(EGR) and
Tax(GOL) = Ty (EGR). This assumption de-
creases the number of parameters from eight to
six and thus increases the stability of the esti-
mates and the degrees of freedom associated
with the estimates. These assumptions are also
considered reasonable because the cells are as-
sumed to begin in stationary phase and thus it
is necessary for them to go through the germina-
tion, outgrowth and lag phase before exponen-
tial growth could begin. By definition once they
leave the lag phase, they are in the exponential
phase of growth. In addition, as mentioned
above, the maximum population density, MPD
is considered constant over the range of tem-
peratures for which growth was observed, and
was set equal to the maximum measured value.
Thus, for modeling the growth characteristics,
there are two equations with 6 unknown para-
meters, a;, by, @y, by, Tryin and Tiay.

1/GOLY? = a)(T - Tpin)
x (1= exp(bi(T = o))"

EGRY? =ay(T = Tuin)
x (1 - exp(bg(T — Tmex)))"

(5)
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For each temperature, the means of the esti-
mated GOL times and exponential growth
rates were calculated (Table 3). The regression
analyses were performed on the means which
could reasonably be assumed to be independent
and closer to having a normal distribution than
the individual replicate measurements. Using
the mean values rather than the individual re-
plicate values helps simplify calculations of
standard errors and confidence intervals.

At the temperature 51°C, no growth of C. per-
fringens was observed for over 3 weeks, or ap-
proximately 504h. Thus, GOL times and
exponential growth rates could not be esti-
mated. As a result, it is necessary to impute va-
lues for these observations. First, relative
growth at time equal to the GOL time is greater
than zero, thus, the GOL time would be greater
than 504 h. For estimating the parameters of
the regression equations, the GOL time was as-
sumed to be 5 weeks, or 840 h at temperature
51°C. In addition, since no growth was observed
at ¢t = 504 h, then, from equation 1, L(504) =
(P—A)/(1+exp(—B(504 — M)))=0. For de-
termining an imputed value for the exponen-
tial growth rate, EGR, it was assumed,
arbitrarily, that there was a relatively small re-
lative growth, equal t0 20%.Thus, it is assumed
that L(504) = log;o(1-2)=0-079. The value of
P - A = (P —logy(INo)) 1in our application, is
approximately 8, so that B(504 — M)=—1In(8/
0-079—1)=—4-6055. Using equation 3 for the
GOL time gives a second equation in B and M.
Solving yields B=0-00775, and thus, EGR=
B(P—-A)/4=0-0155 log;o (cfu ml~Hh~L The in-
clusion of the observation of no growth at 51°C
‘forces’ the estimate of T.,,, to be close to 51°C.
However, the estimate of T, itself, given the
observation of no growth at 51°C is included, is
not affected much by small changes, say 50%,
of the imputed value for this observation from
the one selected. Thus, because this observa-
tion has relatively more influence than other
data points on the estimates of the parameters,
particularly that of Ty,,4, and, for a lesser de-
gree, the value assigned 1s imputed, the weight
for this observation in the regression was set
equal to 0-5.

Estimates of the six parameters were made,
simultaneously, using the seemingly unre-
lated regression (SUR) procedure of the

PROC MODEL routine on PC-SAS%, release
6-12. This estimation procedure minimizes a
function of the squares of the residuals
weighted by the inverse of the variance—-covar-
lance matrix of the residuals. The advantage of
estimating the six parameters directly from
the two equations using the SAS® PROC
MODEL routine is that this procedure takes
into consideration the correlations that exist
between the parameter estimates and com-
putes directly their variance-covariance ma-
trix. However the determination of degrees of
freedom to assign the estimates of the para-
meters and linear combinations of them is
not easy. It suffices to say that direct approxi-
mations of the degrees of freedom would de-
pend upon the magnitudes of the weights
used in the linear combinations and the un-
derlying correlations between variables. To
avoid such complications, the SAS® program
assigns degrees of freedom for equations
using a simple formula, specifically, in our
case, df = N—p, —po/2, where p; is the number
of parameters that are not in common to both
equations, pe are the number of parameters
that are in common and Nis the number of ob-
servations. For us, N=13, p; = 2 and p; = 2.
Thus 10 degrees of freedom are associated
with the estimate of the standard error of the
residuals for each equation. Based on another
formula that SAS® uses, the t-distribution
that is used to compute confidence intervals
for the both types of parameters has 10 de-
grees of freedom. Finally, for computing the
confidence intervals of predictions, SAS®
uses an average based on the degrees of free-
dom associated with the parameters in the
equation. Since all the parameters for out
equations have 10 degrees of freedom, thus all
estimates would have 10 degrees of freedom.
The mean observed and predicted GOL
times and exponential growth rates together
with standard errors of the predictions derived
from the regression and the correlations bet-
ween them are presented in Table 4. The covar-
lance matrix was computed by approximating
the GOL time and the exponential growth rates
as functions of the parameters using the linear
(first partial derivatives) terms of a Taylor
series (Rao 1973). Confidence intervals are
approximated by using the ¢-distribution with

R6713-7



'sanjea pojnduy

66:0— 900 €00 2600 00LL8 0¥-9LE 00078 019
vE-0— €60 S01 091 81 €98 88-G 0-0s
€80— €20 ¥0c 191 €90 15-€ L6'G GLy
¥60— 610 (4 44 (40} 680 68-¢ a9t 4
aro— 610 881 L81 8¢'0 187 Lev 0ev
70— <10 Le1 g1 0v-0 96-€ LEE oL
8¢-0— Gl1o JAQS LeT 6¥0 90¥ 68 0-G¢
1e-0— 800 SL0 901 80 L9 a8 00€
60— L00 190 80 ¥o1 692 819 08¢
60— 900 (agl] 960 691 0601 oL 062
0L0— S0'0 L0 0z-0 8¢-€ SO L1 LL0g 1444
18:0— S0-0 S0 10 16 L¥r0g Srav 061
860— €00 <00 000 €269 68-001 SLVGE OGSt
109 pue yoir uororpaad O pIwIpald §HH ueswr uoorpaad TOH paIvIpaig TOH ussw (D,) eanjeiedwia],
Jo uonjeaaic) yoH jo Jo ajewinysy T09 j0 Jo ejewinysy

I0113 paepue;g

J0LI9 prepue)g

PUE ‘Y3oIq XHd1 ut suasurfiad wmprasoy) jo (-4, _ 1w nyo)0t30)) ‘Y07 ‘erex yimois [eryusuodxa pue (Y

suoIssaL3ax wioly suorjorpaad Furpuodsoriod
) sswil} JOOH pajewrtyss jo uedly ‘g djqeL

R6713-8



Table 4. Estimates, standard errors and 95% confidence intervals of parameters used for estimating
growth characteristics

Parameter® Estimate Standard error Lower limit® Upper limit®
a 0-020 0-003 0-014 0027
by 0-190 0076 0-022 0-359
Qg 0044 0-005 0032 0055
by 0419 0159 0065 0773
Thin(°C)° 10126 2223 6209 16-514
Tinax (°C) 51.020 0047 50.915 51125

®1/GOL? = a,(t — Twmin)(1 — exp(b1(t — Trnax))*, ERGY? = ay(t — Tonin)(1 — exp(bg(t — Tonax))’?

EGR is exponential growth rate.

where

®Confidence limits computed using 97-5th percentile of ¢ — distribution with 10 degrees of freedom.
‘Based on estimate of natural log transformation, to assure that lower limit exceeds 0°C.

10 degrees of freedom. Thus, 95% confidence
intervals are obtained by adding and subtract-
ing 2228 times the standard error (the 97-5th
percentile of the t-distribution with 10 degrees
of freedom is 2-228). From Figs 1and 2, it can be
seen that some of the experimentally deter-
mined values are outside of the computed 95%

0.7

confidence interval. While the figures appear to
show a ‘reasonable’agreement between the pre-
dicted and observed transformed values, there
are large standard errors of prediction of GOL
time at temperatures near Ty, and Tpay. To
help assure estimates of relative growth that
would provide an adequate margin of public

05 |

04 |

Inverse square root GOL time

02

61 |

SR |

10 15 20 25 30

35 40 45 50 55

Temperature (°C)

Figure 1. The square root of the reciprocal of the GOL time (h) of C. perfringens () from this study, pre-
dictions and 95% confidence limits (——) vs. temperature (°C).
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Fig'u re 2. The square root of the exponential growth rate, EGR, (logyo(cfu ml

“Hh~YHofC perfringens (o)

from this study, reported values from other studies (m), predictions and 95% confidence limits (——) vs. tem-

perature (°C).

safety, upper confidence limits of growth
should be used.

The estimate of Ty, was 10-1°C, with a 95%
confidence interval of 6-2°C to 16-5°C. The rela-
tively low standard error associated with the
parameter estimate Tp,., compared to that of
Thin is because of the significant decline in
growth at 51°C compared to the growth at
temperatures only slightly lower than 51°C.
The model, in this respect, is consistent with
other studies which have observed growth at
low temperatures (Hall and Angelotti 1965,
Shoemaker and Pierson 1976). The exponen-
tial growth rates obtained in this study in
broth were, in general, consistent with those
reported in the literature for meat, as can be
seen 1n Fig. 2. Willardsen et al. (1978) reported
that C. perfringens strain NCTC 8238 exhibited
exponential growth rates of 103 and 254
logig(cfu m1~)h~* at 33 and 41°C, respectively,
in autoclaved ground beef stored aerobically.
In the same study, a composite of various
strains of C. perfringens vegetative cells in
autoclaved ground beef exhibited exponential

growth rates of 046, 093 and 2.03log,y(cfu
ml~Hh~!at 26, 33, and 41 °C, respectively. From
the model (Eqn 5) given in this paper the pre-
dicted exponential growth rates and 95% con-
fidence intervals of them, in parentheses, are:
for 26°C, 0-48 (0-35, 0-63); for 33°C, 099 (077,
1-24); and for 41°C, 178 (1-39, 2.22). In another
study, an estimated exponential growth rate
of a C. perfringens eight-strain composite
in autoclaved ground beef under air at 41°C
was 2.05 logyo (cfuml™)h ! (Willardsen et al.
1979). Labbe and Huang (1995) reported an ex-
ponential growth rate of 2:06 logy,(cfu ml™)
h~! in fluid thioglycollate medium plus beef
(Difco) at 43°C, which is close to the prediction
obtained from Eqn 5: 1-98 with 95% confidence
interval of (1-57, 2-43).

Discussion
The model developed in the previous section

can be used to predict growth or relative
growth for specified temperatures throughout
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the entire cooling temperature range of the
cooked foods. For the experiments performed
for this study all environmental conditions
were constant, except for temperature. The pH
of the broth was 6-8. It is worth emphasizing
that the equations for C. perfringens presented
in this report, are appropriate for foods of neu-
tral pH, high water activity and absence of
other microbial inhibitors.

To apply the equations, it is necessary to spe-
cify the initial level or density of organisms,
since, from Eqn 1, the prediction of the amount
of relative growth depends upon the number or
density of organisms, Ny, before growth com-
mences. For example, if logio (Vo) =2 then the
coefficient, P — A, in Eqn 1 would be estimated
to be 84, while if log,o(Ny) =4, then it would be
estimated to be 64, Thus, when increasing
loga(INp) by 2, the estimate of the log;, of the
relative growth would decrease by approxi-
mately 25%, or by close to one generation.

Fig. 3 represents an example prediction
curve, together with a 97-5% upper confidence

limit, of the log;, transformation of relative
growth, L(¢|T), at a temperature, T, of 37°C
(986°F), assuming an initial density of 10*
spores (so that P — A=64). The confidence
limit was computed by approximating the stan-
dard errors using linear terms of the Taylor ser-
ies and the covariance matrix of the estimates
of the growth parameters, and assuming 10 de-
grees of freedom. To prevent lower confidence
limits being less than 0, confidence limits are
computed for the natural logarithm of the
L(t|T). For 37°C, at a prediction of 1logy, rela-
tive growth a 97-5% upper confidence limit of
prediction is approximately 1-73log;, relative
growth. It is predicted that the amount of time
for a 1logy, relative growth would be 393 h. A
97-5% lower limit for the time to obtain a pre-
dicted 1log, relative growth is approximately
321 h.

For temperatures below Ty, or above Tiax
there is predicted to be no growth, and the
GOL time and the exponential growth rate
are not defined. However, because of the

7
6 L
5t
Lower 97-5% bound for time
to obtain
4r log,q

Relative growth = 3-21 h

Log,, relative growth

Predicted time for 1 log,,
Relative growth =3-93 h

6 8 10 12

Time (h)

Figure 3. Pilot of predicted relative growth with initial density =10* cells, and upper 97-5% clonﬁtlience
limit. Temperature = 37°C (98-6°F); GOL time-3-56 h; exponential growth rate =137 logyp(cfuml ™ Hh ™"
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uncertainty of the estimates of Tnin O Trnax,
there is the possibility that there would be
growth at temperatures outside the interval
(Ttnin, Tmax)- The variance approximation tech-
nique using the Taylor series for temperatures
outside the interval (T, T'max) cannot be ap-
plied. To estimate an upper confidence limit for
the predictions of growth for temperatures out-
side the interval (T, Thay) it is necessary,
therefore, to use a more direct and complicated
calculation. A brief description is given in an
appendix.

For general cooling scenarios, the tempera-
ture is changing constantly. Discontinuous
cooling followed by a rise in temperature (often
due to equipment malfunction or electrical out-
age) and subsequent continuation of cooling
may occur in the food industry and retail food
service establishments, The regulatory agen-
cies and the personnel involved in the food pre-
paration need to determine if the product
remains safe after such cooling deviations.
Thus an expression for determining growth
for cooling scenarios is needed. In addition,
for the purpose of calculating directly an esti-
mate of the standard error of the predictions, a
closed form expression of the predicted relative
growth as a function of the parameters esti-
mated from the Ratkowsky equations is
needed.

In the usual scenario, temperatures of the
warmest section of the product, where organ-
isms might reside, would be monitored. Be-
tween times for which temperatures are
known, assuming that the ambient air tem-
perature remains nearly the same, it is as-
sumed that temperatures change exponen-
tially (Juneja et al. 1994). Thus, it is assumed
that the temperature, 7, changes with time by
some known continuous function of time, ¢(t).
However, because Eqns 1 and 3 apply for con-
stant temperature one cannot just apply the
calculus for calculating relative growth with-
out some assumptions or actual knowledge re-
garding the impact of prior environmental
history on the growth parameters. It is gener-
ally assumed that the exponential growth rate
1s not dependent upon previous environments,
while the GOL time does depend upon pre-
vious environments (Baranyi and Roberts
1994). As the temperature, 7, changes, the

growth curve, € (T), changes. Thus, for exam-
ple, suppose the initial temperature wag Ty,
and then, after a time, t,, the temperature of
the product changes suddenly to 7). From the
above assumption, the exponentia] growth
rate can be assumed to be equal to the one as-
sociated with curve € (T}), however, the GoL
time would not be equal to that of curve
€(71). In order to maintain continuity in the
estimate of the relative growth moving from
one growth curve, ¢(T),, to the other curve
£ (T1), the change on € (T}) could be added to’
the value of the relative growth at to, before
the temperature change. The problem is where
(for what value of time) do we begin to measure
the change on & (T')? Because the GOL time is
expressed as an additive constant to time, it ig
proposed that the beginning value for meagyr.
ing change on ¢(T1) is just a translation
of time proportional to the distance from
a specified ‘pivot’ point, z(T}), of the curve,
which is a function of the temperature, such
as GOL or M. Thus, the beginning point for
measuring change on e(Ti), £, is at a
distance from 2z(7), which is proportional
to the distance that # is from z(Ty).
Thus & ~2(T\) = (1 - po)2(Th) where p =
to/2(Ty). Continuing, suppose at time ¢, the
temperature changes to 7T, and that
p1 = (ti — 1})/2(T1). The starting time, t;, on
the growth curve ¢(T%) is defined by
t5—2(T2) = (1 —po — p1)2(Ts). Fig. 4 depicts
three hypothetical growth curves and shows
the ‘starting points’ on the second and third
curves after changes in temperature at time ¢,
and ?;. For the ith curve, the starting point, t.
1s given by ¢/ — 2(T;) = (1 — £ p;)2(T;), where
the subscript j is from 0to i — 1.

More generally, assume that L(t|T) can be
written as a function H(k - (t — z(T),n) where
k, z and 7 are functions of temperature. Let
be the time such that (1) = T Define f(1) to
be a function defining the translation from the
pivot point 2(g(1)) along the time axis reflect-
ing the accumulated ratios of length of times
to pivot points ‘spent’ on previous growth
curves up to time 1, that is, f(t) = 2(g(1))
(1— f; 27} (q(s))ds. Note, this function will be
negative once the time exceeds 100% of the
GOL times. Using the standard calculus (Toral-
balla 1967) it can be shown that the expected
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Figure 4. Hypothetical relative growth curves depicting determination of starting times, t!, on curves
for measuring relative growth when there are changes in temperature. z="pivot’ points from which dis-

tances on the time axis are measured.

value of logy(N(t)/No) = E(L(t)), can be ex-
pressed as:

t

E(L() = /0 H'(k{g(x))
7

(2(t),n(g(t))) dr (8)

where H' is the derivative of H with respect to
time evaluated at time zero and holding
temperature constant. The variance of E(L(2)),
reflecting the uncertainty of the estimated
parameters derived from the Ratkowsky equa-
tions, can now be determined by computing
partial derivatives of the expression in Eqn 6
with respect to the parameters that are esti-
mated in Eqn 5 and using the Taylor series lin-
ear approximation, as described above. While
the calculations look formidable, they can be
performed with relative ease on computer pro-
grams that have mathematical language and
calculation capability.

Two suggested pivot points are: M, the time
for which the rate of relative growth is equal

to the maximal rate of relative growth, EGR,
or the GOL time. Our calculations (performed
on Mathcad®, version 7) indicate the choice of
a pivot point may not be too critical as would
be expected since the slope of the growth
curve for times greater than the GOL time is
close to the EGR. For sudden changes in tem-
perature, it is possible that the GOL time for
the new temperature changes by more than a
proportional amount of time spent at the GOL
time for the old temperature (Zwietering et al.
1994). However, for continuous or slow tem-
perature change, it would be expected that
the GOL times changes proportionally, as de-
scribed above by the function f. Experiments
are being planned to validate the translation
function f, or to determine a more appropriate
function. For our calculations, Eqn 6 is used
with the function, f, defined above, that uses
the GOL time as the pivot point. In order to re-
flect the uncertainty of the estimates, a 97-5%
upper confidence limit is calculated by adding
to the predicted value 2228 times the
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estimated standard error of prediction ob-
tained from the Taylor series approximation.
For a hypothetical cooling of product from
50°C to 10°C in 8 h, the predicted relative
growth is 3-37 and the 97-5% upper limit
is 6-73.

In summary, this paper presents Ratkowsky
type equations (models) for predicting the ef-
fect of temperature on GOL and EGR of C. per-
fringens during cooling of certain cooked meat
products. From these equations and assump-
tions, a closed form expression for the ex-
pected relative growth that would occur with
changing temperatures during cooling of
meat products was developed. The use of this
closed form equation enables direct calcula-
tion of the predicted relative growth and
approximate confidence limits of these predic-
tions. Research is being planned to validate
assumptions and equations presented in this

paper.
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Appendix A

Calculation of confidence interval of estimated
relative growth at temperatures outside inter-
val (Tmim Tmax)-

For a given temperature 7, compute L(t|T,v)
for every vector, v, in the six-dimensional space
pg that corresponds to the six parameters given
in Eqn 3. If T<v(Twin) or T> v(Tax), where
U(Tmin) or U{Trax) represent the component of
the vector, y along the (Ty,) axis or (Tmax)
axis, respectively, then L(¢|T,v) is defined to
be equal to 0.To each point, v, a probability mea-
sure, p (v), is assigned. The probability measure
is based on the density of the multivariate
T*-distribution, where T2 = (v — vp)'S~ (v ~ vp)
(Anderson 1958), with mean, vy, equal to the va-
lues of the parameters defined in Table 3 and
covariance matrix, S, equal to the covariance
matrix of the estimates of the growth para-
meters, assumed to have 10 degrees of freedom.
Accordingly, the value 7'2/10((5/6)] is distribu-
ted as a central F-distribution with six and five
degrees of freedom. Thus, for each vector y,
there is curve, L(¢|T,v), which depends upon
the specified temperature, T, and a probability
measure, p(v). For given time, ¢, the elements
of the probability distribution: (L(¢{T,v), p(v))
can be used to compute upper confidence
limits. '
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